Papers
Topics
Authors
Recent
2000 character limit reached

Incremental Semantic Mapping with Unsupervised On-line Learning (1907.04001v2)

Published 9 Jul 2019 in cs.RO, cs.LG, and cs.NE

Abstract: This paper introduces an incremental semantic mapping approach, with on-line unsupervised learning, based on Self-Organizing Maps (SOM) for robotic agents. The method includes a mapping module, which incrementally creates a topological map of the environment, enriched with objects recognized around each topological node, and a module of places categorization, endowed with an incremental unsupervised learning SOM with on-line training. The proposed approach was tested in experiments with real-world data, in which it demonstrates promising capabilities of incremental acquisition of topological maps enriched with semantic information, and for clustering together similar places based on this information. The approach was also able to continue learning from newly visited environments without degrading the information previously learned.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.