Papers
Topics
Authors
Recent
Search
2000 character limit reached

Contextuality and Noncontextuality Measures and Generalized Bell Inequalities for Cyclic Systems

Published 7 Jul 2019 in quant-ph and math.PR | (1907.03328v10)

Abstract: Cyclic systems of dichotomous random variables have played a prominent role in contextuality research, describing such experimental paradigms as the Klyachko-Can-Binicoglu-Shumovky, Einstein-Podolsky-Rosen-Bell, and Leggett-Garg ones in physics, as well as conjoint binary choices in human decision making. Here, we understand contextuality within the framework of the Contextuality-by-Default (CbD) theory, based on the notion of probabilistic couplings satisfying certain constraints. CbD allows us to drop the commonly made assumption that systems of random variables are consistently connected. Consistently connected systems constitute a special case in which CbD essentially reduces to the conventional understanding of contextuality. We present a theoretical analysis of the degree of contextuality in cyclic systems (if they are contextual) and the degree of noncontextuality in them (if they are not). By contrast, all previously proposed measures of contextuality are confined to consistently connected systems, and most of them cannot be extended to measures of noncontextuality. Our measures of (non)contextuality are defined by the L_{1}-distance between a point representing a cyclic system and the surface of the polytope representing all possible noncontextual cyclic systems with the same single-variable marginals. We completely characterize this polytope, as well as the polytope of all possible probabilistic couplings for cyclic systems with given single-variable marginals.[...]

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.