Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Axiom of Determinacy Implies Dependent Choices in Mice

Published 5 Jul 2019 in math.LO | (1907.02755v1)

Abstract: We show that the Axiom of Dependent Choices, $\operatorname{DC}$, holds in countably iterable, passive premice $\mathcal{M}$ construced over their reals which satisfy the Axiom of Determinacy, $\operatorname{AD}$, in a $\operatorname{ZF}+\operatorname{DC}_{\mathbb{R}{\mathcal{M}}}$ background universe. This generalizes an argument of Kechris for $L(\mathbb{R})$ using Steel's analysis of scales in mice. In particular, we show that for any $n \leq \omega$ and any countable set of reals $A$ so that $M_n(A) \cap \mathbb{R} = A$ and $M_n(A) \vDash \operatorname{AD}$, we have that $M_n(A) \vDash \operatorname{DC}$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.