Geometric moves relate geometric triangulations (1907.02643v3)
Abstract: A geometric triangulation of a Riemannian manifold is a triangulation where the interior of each simplex is totally geodesic. Bistellar moves are local changes to the triangulation which are higher dimensional versions of the flip operation of triangulations in a plane. We show that geometric triangulations of a compact hyperbolic, spherical or Euclidean manifold are connected by geometric bistellar moves (possibly adding or removing vertices), after taking sufficiently many derived subdivisions. For dimensions 2 and 3, we show that geometric triangulations of such manifolds are directly related by geometric bistellar moves (without having to take derived subdivision).
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.