Papers
Topics
Authors
Recent
2000 character limit reached

Neural Networks, Hypersurfaces, and Radon Transforms (1907.02220v1)

Published 4 Jul 2019 in stat.ML and cs.LG

Abstract: Connections between integration along hypersufaces, Radon transforms, and neural networks are exploited to highlight an integral geometric mathematical interpretation of neural networks. By analyzing the properties of neural networks as operators on probability distributions for observed data, we show that the distribution of outputs for any node in a neural network can be interpreted as a nonlinear projection along hypersurfaces defined by level surfaces over the input data space. We utilize these descriptions to provide new interpretation for phenomena such as nonlinearity, pooling, activation functions, and adversarial examples in neural network-based learning problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.