Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Slim-CNN: A Light-Weight CNN for Face Attribute Prediction (1907.02157v1)

Published 3 Jul 2019 in cs.CV

Abstract: We introduce a computationally-efficient CNN micro-architecture Slim Module to design a lightweight deep neural network Slim-Net for face attribute prediction. Slim Modules are constructed by assembling depthwise separable convolutions with pointwise convolution to produce a computationally efficient module. The problem of facial attribute prediction is challenging because of the large variations in pose, background, illumination, and dataset imbalance. We stack these Slim Modules to devise a compact CNN which still maintains very high accuracy. Additionally, the neural network has a very low memory footprint which makes it suitable for mobile and embedded applications. Experiments on the CelebA dataset show that Slim-Net achieves an accuracy of 91.24% with at least 25 times fewer parameters than comparably performing methods, which reduces the memory storage requirement of Slim-net by at least 87%.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.