Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Circuit-Based Intrinsic Methods to Detect Overfitting (1907.01991v2)

Published 3 Jul 2019 in cs.LG and stat.ML

Abstract: The focus of this paper is on intrinsic methods to detect overfitting. By intrinsic methods, we mean methods that rely only on the model and the training data, as opposed to traditional methods (we call them extrinsic methods) that rely on performance on a test set or on bounds from model complexity. We propose a family of intrinsic methods, called Counterfactual Simulation (CFS), which analyze the flow of training examples through the model by identifying and perturbing rare patterns. By applying CFS to logic circuits we get a method that has no hyper-parameters and works uniformly across different types of models such as neural networks, random forests and lookup tables. Experimentally, CFS can separate models with different levels of overfit using only their logic circuit representations without any access to the high level structure. By comparing lookup tables, neural networks, and random forests using CFS, we get insight into why neural networks generalize. In particular, we find that stochastic gradient descent in neural nets does not lead to "brute force" memorization, but finds common patterns (whether we train with actual or randomized labels), and neural networks are not unlike forests in this regard. Finally, we identify a limitation with our proposal that makes it unsuitable in an adversarial setting, but points the way to future work on robust intrinsic methods.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.