Papers
Topics
Authors
Recent
2000 character limit reached

Optimization on flag manifolds (1907.00949v2)

Published 1 Jul 2019 in math.OC and math.DG

Abstract: A flag is a sequence of nested subspaces. Flags are ubiquitous in numerical analysis, arising in finite elements, multigrid, spectral, and pseudospectral methods for numerical PDE; they arise in the form of Krylov subspaces in matrix computations, and as multiresolution analysis in wavelets constructions. They are common in statistics too --- principal component, canonical correlation, and correspondence analyses may all be viewed as methods for extracting flags from a data set. The main goal of this article is to develop the tools needed for optimizing over a set of flags, which is a smooth manifold called the flag manifold, and it contains the Grassmannian as the simplest special case. We will derive closed-form analytic expressions for various differential geometric objects required for Riemannian optimization algorithms on the flag manifold; introducing various systems of extrinsic coordinates that allow us to parameterize points, metrics, tangent spaces, geodesics, distance, parallel transport, gradients, Hessians in terms of matrices and matrix operations; and thereby permitting us to formulate steepest descent, conjugate gradient, and Newton algorithms on the flag manifold using only standard numerical linear algebra.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.