Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Meromorphic connections, determinant line bundles and the Tyurin parametrization (1907.00133v2)

Published 29 Jun 2019 in math.AG

Abstract: We develop a holomorphic equivalence between on one hand the space of pairs (stable bundle, flat connection on the bundle) and the "sheaf of holomorphic connections" (the sheaf of splittings of the one-jet sequence) for the determinant (Quillen) line bundle over the moduli space of vector bundles on a compact connected Riemann surface. This equivalence is shown to be holomorphically symplectic. The equivalences, both holomorphic and symplectic, seem to be quite general, in that they extend to other general families of holomorphic bundles and holomorphic connections, in particular those arising from "Tyurin families" of stable bundles over the surface. These families generalize the Tyurin parametrization of stable vector bundles $E$ over a compact connected Riemann surface, and one can build above them spaces of (equivalence classes of) connections, which are again symplectic. These spaces are also symplectically biholomorphically equivalent to the sheaf of connections for the determinant bundle over the Tyurin family. The last portion of the paper shows how this extends to moduli of framed bundles.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.