Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Formulating causal questions and principled statistical answers (1906.12100v1)

Published 28 Jun 2019 in stat.ME

Abstract: Although review papers on causal inference methods are now available, there is a lack of introductory overviews on what they can render and on the guiding criteria for choosing one particular method. This tutorial gives an overview in situations where an exposure of interest is set at a chosen baseline (point exposure') and the target outcome arises at a later time point. We first phrase relevant causal questions and make a case for being specific about the possible exposure levels involved and the populations for which the question is relevant. Using the potential outcomes framework, we describe principled definitions of causal effects and of estimation approaches classified according to whether they invoke the no unmeasured confounding assumption (including outcome regression and propensity score-based methods) or an instrumental variable with added assumptions. We discuss challenges and potential pitfalls and illustrate application using asimulation learner', that mimics the effect of various breastfeeding interventions on a child's later development. This involves a typical simulation component with generated exposure, covariate, and outcome data that mimic those from an observational or randomised intervention study. The simulation learner further generates various (linked) exposure types with a set of possible values per observation unit, from which observed as well as potential outcome data are generated. It thus provides true values of several causal effects. R code for data generation and analysis is available on www.ofcaus.org, where SAS and Stata code for analysis is also provided.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube