Papers
Topics
Authors
Recent
2000 character limit reached

Predicting Confusion from Eye-Tracking Data with Recurrent Neural Networks (1906.11211v1)

Published 19 Jun 2019 in cs.CV, cs.HC, and cs.LG

Abstract: Encouraged by the success of deep learning in a variety of domains, we investigate the suitability and effectiveness of Recurrent Neural Networks (RNNs) in a domain where deep learning has not yet been used; namely detecting confusion from eye-tracking data. Through experiments with a dataset of user interactions with ValueChart (an interactive visualization tool), we found that RNNs learn a feature representation from the raw data that allows for a more powerful classifier than previous methods that use engineered features. This is evidenced by the stronger performance of the RNN (0.74/0.71 sensitivity/specificity), as compared to a Random Forest classifier (0.51/0.70 sensitivity/specificity), when both are trained on an un-augmented dataset. However, using engineered features allows for simple data augmentation methods to be used. These same methods are not as effective at augmentation for the feature representation learned from the raw data, likely due to an inability to match the temporal dynamics of the data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.