Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Asymptotically Moebius maps and rigidity for the hyperbolic plane (1906.10563v1)

Published 25 Jun 2019 in math.GT

Abstract: Let $S$ be a rank-one symmetric space of non-compact type and let $X$ be a $\text{CAT}(-1)$ space. A well-known result by Bourdon states that if a topological embedding $\varphi: \partial_\infty S \rightarrow \partial_\infty X$ respects cross ratios, that means $\text{cr}S( \xi_0,\eta_0,\xi_1,\eta_1)=\text{cr}_X( \varphi(\xi_0),\varphi(\eta_0),\varphi(\xi_1),\varphi(\eta_1))$ for every $\xi_0,\eta_0,\xi_1,\eta_1 \in \partial\infty S$, then $\varphi$ is induced by an isometric embedding of $S$ into $X$. We generalize this result when $S=\mathbb{H}2$ is the real hyperbolic plane as it follows. Let $\varphi_k: \partial_\infty \mathbb{H}2 \rightarrow \partial_\infty X$ be a sequence of continuous maps which are asymptotically Moebius, that means $\lim_{k \to \infty} \text{cr}X(\varphi_k(\xi_0),\varphi_k(\eta_0),\varphi_k(\xi_1),\varphi_k(\eta_1))=\text{cr}{\mathbb{H}2}( \xi_0,\eta_0,\xi_1,\eta_1)$ for every $\xi_0,\eta_0,\xi_1,\eta_1 \in \partial_\infty \mathbb{H}2$. Assume that the isometry group $\text{Isom}(X)$ acts transitively on triples of distinct points of $\partial_\infty X$. Then there must exists a sequence $(g_k){k \in \mathbb{N}}$, $g_k \in \text{Isom}(X)$ and a map $\varphi\infty: \partial_\infty \mathbb{H}2\rightarrow \partial_\infty X$ such that $\lim_{k \to \infty} g_k\varphi_k(\xi)=\varphi_\infty(\xi)$ for every $\xi \in \partial_\infty \mathbb{H}2$ and $\varphi_\infty$ is induced by an isometric embedding of $\mathbb{H}2$ into $X$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.