3D Surface Reconstruction from Voxel-based Lidar Data (1906.10515v1)
Abstract: To achieve fully autonomous navigation, vehicles need to compute an accurate model of their direct surrounding. In this paper, a 3D surface reconstruction algorithm from heterogeneous density 3D data is presented. The proposed method is based on a TSDF voxel-based representation, where an adaptive neighborhood kernel sourced on a Gaussian confidence evaluation is introduced. This enables to keep a good trade-off between the density of the reconstructed mesh and its accuracy. Experimental evaluations carried on both synthetic (CARLA) and real (KITTI) 3D data show a good performance compared to a state of the art method used for surface reconstruction.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.