Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Accelerating Deep Reinforcement Learning strategies of Flow Control through a multi-environment approach (1906.10382v3)

Published 25 Jun 2019 in physics.comp-ph

Abstract: Deep Reinforcement Learning (DRL) has recently been proposed as a methodology to discover complex Active Flow Control (AFC) strategies [Rabault, J., Kuchta, M., Jensen, A., Reglade, U., & Cerardi, N. (2019): "Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control", Journal of Fluid Mechanics, 865, 281-302]. However, while promising results were obtained on a simple 2D benchmark flow at a moderate Reynolds number, considerable speedups will be required to investigate more challenging flow configurations. In the case of DRL trained with Computational Fluid Dynamics (CFD) data, it was found that the CFD part, rather than training the Artificial Neural Network, was the limiting factor for speed of execution. Therefore, speedups should be obtained through a combination of two approaches. The first one, which is well documented in the literature, is to parallelize the numerical simulation itself. The second one is to adapt the DRL algorithm for parallelization. Here, a simple strategy is to use several independent simulations running in parallel to collect experiences faster. In the present work, we discuss this solution for parallelization. We illustrate that perfect speedups can be obtained up to the batch size of the DRL agent, and slightly suboptimal scaling still takes place for an even larger number of simulations. This is, therefore, an important step towards enabling the study of more sophisticated Fluid Mechanics problems through DRL.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube