Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Derivation of the Variational Bayes Equations (1906.08804v6)

Published 20 Jun 2019 in cs.NE and q-bio.NC

Abstract: The derivation of key equations for the variational Bayes approach is well-known in certain circles. However, translating the fundamental derivations (e.g., as found in Beal's work) to Friston's notation is somewhat delicate. Further, the notion of using variational Bayes in the context of a system with a Markov blanket requires special attention. This Technical Report presents the derivation in detail. It further illustrates how the variational Bayes method provides a framework for a new computational engine, incorporating the 2-D cluster variation method (CVM), which provides a necessary free energy equation that can be minimized across both the external and representational systems' states, respectively.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com