Generalization of the Zabolotskaya equation to all incompressible isotropic elastic solids (1906.08087v1)
Abstract: We study elastic shear waves of small but finite amplitude, composed of an anti-plane shear motion and a general in-plane motion. We use a multiple scales expansion to derive an asymptotic system of coupled nonlinear equations describing their propagation in all isotropic incompressible non-linear elastic solids, generalizing the scalar Zabolotskaya equation of compressible nonlinear elasticity. We show that for a general isotropic incompressible solid, the coupling between anti-plane and in-plane motions cannot be undone and thus conclude that linear polarization is impossible for general nonlinear two-dimensional shear waves. We then use the equations to study the evolution of a nonlinear Gaussian beam in a soft solid: we show that a pure (linearly polarised) shear beam source generates only odd harmonics, but that introducing a slight in-plane noise in the source signal leads to a second harmonic, of the same magnitude as the fifth harmonic, a phenomenon recently observed experimentally. Finally, we present examples of some special shear motions with linear polarisation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.