Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bayesian fusion and multimodal DCM for EEG and fMRI (1906.07354v1)

Published 18 Jun 2019 in q-bio.QM and q-bio.NC

Abstract: This paper asks whether integrating multimodal EEG and fMRI data offers a better characterisation of functional brain architectures than either modality alone. This evaluation rests upon a dynamic causal model that generates both EEG and fMRI data from the same neuronal dynamics. We introduce the use of Bayesian fusion to provide informative (empirical) neuronal priors - derived from dynamic causal modelling (DCM) of EEG data - for subsequent DCM of fMRI data. To illustrate this procedure, we generated synthetic EEG and fMRI timeseries for a mismatch negativity (or auditory oddball) paradigm, using biologically plausible model parameters (i.e., posterior expectations from a DCM of empirical, open access, EEG data). Using model inversion, we found that Bayesian fusion provided a substantial improvement in marginal likelihood or model evidence, indicating a more efficient estimation of model parameters, in relation to inverting fMRI data alone. We quantified the benefits of multimodal fusion with the information gain pertaining to neuronal and haemodynamic parameters - as measured by the Kullback-Leibler divergence between their prior and posterior densities. Remarkably, this analysis suggested that EEG data can improve estimates of haemodynamic parameters; thereby furnishing proof-of-principle that Bayesian fusion of EEG and fMRI is necessary to resolve conditional dependencies between neuronal and haemodynamic estimators. These results suggest that Bayesian fusion may offer a useful approach that exploits the complementary temporal (EEG) and spatial (fMRI) precision of different data modalities. We envisage the procedure could be applied to any multimodal dataset that can be explained by a DCM with a common neuronal parameterisation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.