Papers
Topics
Authors
Recent
2000 character limit reached

CheckNet: Secure Inference on Untrusted Devices (1906.07148v1)

Published 17 Jun 2019 in cs.LG, cs.CR, and stat.ML

Abstract: We introduce CheckNet, a method for secure inference with deep neural networks on untrusted devices. CheckNet is like a checksum for neural network inference: it verifies the integrity of the inference computation performed by untrusted devices to 1) ensure the inference has actually been performed, and 2) ensure the inference has not been manipulated by an attacker. CheckNet is completely transparent to the third party running the computation, applicable to all types of neural networks, does not require specialized hardware, adds little overhead, and has negligible impact on model performance. CheckNet can be configured to provide different levels of security depending on application needs and compute/communication budgets. We present both empirical and theoretical validation of CheckNet on multiple popular deep neural network models, showing excellent attack detection (0.88-0.99 AUC) and attack success bounds.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.