Pre-Calabi-Yau algebras and double Poisson brackets (1906.07134v1)
Abstract: We give an explicit formula showing how the double Poisson algebra introduced in \cite{VdB} appears as a particular part of a pre-Calabi-Yau structure, i.e. cyclically invariant, with respect to the natural inner form, solution of the Maurer-Cartan equation on $A\oplus A*$. Specific part of this solution is described, which is in one-to-one correspondence with the double Poisson algebra structures. The result holds for any associative algebra $A$ and emphasizes the special role of the fourth component of a pre-Calabi-Yau structure in this respect. As a consequence we have that appropriate pre-Calabi-Yau structures induce a Poisson brackets on representation spaces $({\rm Rep}_n A){Gl_n}$ for any associative algebra $A$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.