Papers
Topics
Authors
Recent
2000 character limit reached

Decomposition formula for jump diffusion models

Published 17 Jun 2019 in q-fin.PR and math.PR | (1906.06930v1)

Abstract: In this paper we derive a generic decomposition of the option pricing formula for models with finite activity jumps in the underlying asset price process (SVJ models). This is an extension of the well-known result by Alos (2012) for Heston (1993) SV model. Moreover, explicit approximation formulas for option prices are introduced for a popular class of SVJ models - models utilizing a variance process postulated by Heston (1993). In particular, we inspect in detail the approximation formula for the Bates (1996) model with log-normal jump sizes and we provide a numerical comparison with the industry standard - Fourier transform pricing methodology. For this model, we also reformulate the approximation formula in terms of implied volatilities. The main advantages of the introduced pricing approximations are twofold. Firstly, we are able to significantly improve computation efficiency (while preserving reasonable approximation errors) and secondly, the formula can provide an intuition on the volatility smile behaviour under a specific SVJ model.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.