Relevance Feedback with Latent Variables in Riemann spaces (1906.06526v1)
Abstract: In this paper we develop and evaluate two methods for relevance feedback based on endowing a suitable "semantic query space" with a Riemann metric derived from the probability distribution of the positive samples of the feedback. The first method uses a Gaussian distribution to model the data, while the second uses a more complex Latent Semantic variable model. A mixed (discrete-continuous) version of the Expectation-Maximization algorithm is developed for this model. We motivate the need for the semantic query space by analyzing in some depth three well-known relevance feedback methods, and we develop a new experimental methodology to evaluate these methods and compare their performance in a neutral way, that is, without making assumptions on the system in which they will be embedded.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.