Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DeepSPACE: Approximate Geospatial Query Processing with Deep Learning (1906.06085v1)

Published 14 Jun 2019 in cs.DB

Abstract: The amount of the available geospatial data grows at an ever faster pace. This leads to the constantly increasing demand for processing power and storage in order to provide data analysis in a timely manner. At the same time, a lot of geospatial processing is visual and exploratory in nature, thus having bounded precision requirements. We present DeepSPACE, a deep learning-based approximate geospatial query processing engine which combines modest hardware requirements with the ability to answer flexible aggregation queries while keeping the required state to a few hundred KiBs.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.