Papers
Topics
Authors
Recent
2000 character limit reached

Handwritten Text Segmentation via End-to-End Learning of Convolutional Neural Network (1906.05229v1)

Published 12 Jun 2019 in cs.CV

Abstract: We present a new handwritten text segmentation method by training a convolutional neural network (CNN) in an end-to-end manner. Many conventional methods addressed this problem by extracting connected components and then classifying them. However, this two-step approach has limitations when handwritten components and machine-printed parts are overlapping. Unlike conventional methods, we develop an end-to-end deep CNN for this problem, which does not need any preprocessing steps. Since there is no publicly available dataset for this goal and pixel-wise annotations are time-consuming and costly, we also propose a data synthesis algorithm that generates realistic training samples. For training our network, we develop a cross-entropy based loss function that addresses the imbalance problems. Experimental results on synthetic and real images show the effectiveness of the proposed method. Specifically, the proposed network has been trained solely on synthetic images, nevertheless the removal of handwritten text in real documents improves OCR performance from 71.13% to 92.50%, showing the generalization performance of our network and synthesized images.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.