Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Subspace Attack: Exploiting Promising Subspaces for Query-Efficient Black-box Attacks (1906.04392v1)

Published 11 Jun 2019 in cs.CV, cs.CR, cs.LG, and cs.NE

Abstract: Unlike the white-box counterparts that are widely studied and readily accessible, adversarial examples in black-box settings are generally more Herculean on account of the difficulty of estimating gradients. Many methods achieve the task by issuing numerous queries to target classification systems, which makes the whole procedure costly and suspicious to the systems. In this paper, we aim at reducing the query complexity of black-box attacks in this category. We propose to exploit gradients of a few reference models which arguably span some promising search subspaces. Experimental results show that, in comparison with the state-of-the-arts, our method can gain up to 2x and 4x reductions in the requisite mean and medium numbers of queries with much lower failure rates even if the reference models are trained on a small and inadequate dataset disjoint to the one for training the victim model. Code and models for reproducing our results will be made publicly available.

Citations (105)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.