Exact WKB and abelianization for the $T_3$ equation (1906.04271v2)
Abstract: We describe the exact WKB method from the point of view of abelianization, both for Schr\"odinger operators and for their higher-order analogues (opers). The main new example which we consider is the "$T_3$ equation," an order $3$ equation on the thrice-punctured sphere, with regular singularities at the punctures. In this case the exact WKB analysis leads to consideration of a new sort of Darboux coordinate system on a moduli space of flat $\mathrm{SL}(3)$-connections. We give the simplest example of such a coordinate system, and verify numerically that in these coordinates the monodromy of the $T_3$ equation has the expected asymptotic properties. We also briefly revisit the Schr\"odinger equation with cubic potential and the Mathieu equation from the point of view of abelianization.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.