Papers
Topics
Authors
Recent
2000 character limit reached

An Automaton Group with PSPACE-Complete Word Problem

Published 8 Jun 2019 in cs.FL and math.GR | (1906.03424v3)

Abstract: We construct an automaton group with a PSPACE-complete word problem, proving a conjecture due to Steinberg. Additionally, the constructed group has a provably more difficult, namely EXPSPACE-complete, compressed word problem and acts over a binary alphabet. Thus, it is optimal in terms of the alphabet size. Our construction directly simulates the computation of a Turing machine in an automaton group and, therefore, seems to be quite versatile. It combines two ideas: the first one is a construction used by D'Angeli, Rodaro and the first author to obtain an inverse automaton semigroup with a PSPACE-complete word problem and the second one is to utilize a construction used by Barrington to simulate Boolean circuits of bounded degree and logarithmic depth in the group of even permutations over five elements.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.