Papers
Topics
Authors
Recent
2000 character limit reached

A note on eigenvalues estimates for one-dimensional diffusion operators

Published 6 Jun 2019 in math.PR and math.FA | (1906.02496v1)

Abstract: Dealing with one-dimensional diffusion operators, we obtain upper and lower variational formulae on the eigenvalues given by the max-min principle, generalizing the celebrated result of Chen and Wang on the spectral gap. Our inequalities reveal to be sharp at least when the eigenvalues considered belong to the discrete spectrum of the operator, since in this case both lower and upper bounds coincide and involve the associated eigenfunctions. Based on the intertwinings between diffusion operators and some convenient gradients with weights, our approach also allows to estimate the gap between the two first positive eigenvalues when the spectral gap belongs to the discrete spectrum.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.