Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Towards conceptual generalization in the embedding space (1906.01873v3)

Published 5 Jun 2019 in cs.AI and cs.CL

Abstract: Humans are able to conceive physical reality by jointly learning different facets thereof. To every pair of notions related to a perceived reality may correspond a mutual relation, which is a notion on its own, but one-level higher. Thus, we may have a description of perceived reality on at least two levels and the translation map between them is in general, due to their different content corpus, one-to-many. Following success of the unsupervised neural machine translation models, which are essentially one-to-one mappings trained separately on monolingual corpora, we examine further capabilities of the unsupervised deep learning methods used there and apply some of these methods to sets of notions of different level and measure. Using the graph and word embedding-like techniques, we build one-to-many map without parallel data in order to establish a unified vector representation of the outer world by combining notions of different kind into a unique conceptual framework. Due to their latent similarity, by aligning the two embedding spaces in purely unsupervised way, one obtains a geometric relation between objects of cognition on the two levels, making it possible to express a natural knowledge using one description in the context of the other.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.