Papers
Topics
Authors
Recent
2000 character limit reached

Robust Mean Estimation with the Bayesian Median of Means (1906.01204v1)

Published 4 Jun 2019 in math.ST, stat.ME, and stat.TH

Abstract: The sample mean is often used to aggregate different unbiased estimates of a parameter, producing a final estimate that is unbiased but possibly high-variance. This paper introduces the Bayesian median of means, an aggregation rule that roughly interpolates between the sample mean and median, resulting in estimates with much smaller variance at the expense of bias. While the procedure is non-parametric, its squared bias is asymptotically negligible relative to the variance, similar to maximum likelihood estimators. The Bayesian median of means is consistent, and concentration bounds for the estimator's bias and $L_1$ error are derived, as well as a fast non-randomized approximating algorithm. The performances of both the exact and the approximate procedures match that of the sample mean in low-variance settings, and exhibit much better results in high-variance scenarios. The empirical performances are examined in real and simulated data, and in applications such as importance sampling, cross-validation and bagging.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.