Ihara zeta function, coefficients of Maclaurin series, and Ramanujan graphs
Abstract: Let $X$ denote a connected $(q+1)$-regular undirected graph of finite order $n$. The graph $X$ is called Ramanujan whenever $$ |\lambda|\leq 2q{\frac{1}{2}} $$ for all nontrivial eigenvalues $\lambda$ of $X$. We consider the variant $\Xi(u)$ of the Ihara zeta function $Z(u)$ of $X$ defined by \begin{gather*} \Xi(u){-1} = \left{ \begin{array}{ll} (1-u)(1-qu)(1-q{\frac{1}{2}} u){2n-2}(1-u2){\frac{n(q-1)}{2}} Z(u) \qquad &\hbox{if $X$ is nonbipartite}, (1-q2u2) (1-q{\frac{1}{2}} u){2n-4} (1-u2){\frac{n(q-1)}{2}+1} Z(u) \qquad &\hbox{if $X$ is bipartite}. \end{array} \right. \end{gather*} The function $\Xi(u)$ satisfies the functional equation $\Xi(q{-1} u{-1})=\Xi(u)$. Let ${h_k}{k=1}\infty$ denote the number sequence given by $$ \frac{d}{du}\ln \Xi(q{-\frac{1}{2}}u) =\sum{k=0}\infty h_{k+1} uk. $$ In this paper we establish the equivalence of the following statements: (i) $X$ is Ramanujan; (ii) $h_k\geq 0$ for all $k\geq 1$; (iii) $h_{k}\geq 0$ for infinitely many even $k\geq 2$. Furthermore we derive the Hasse--Weil bound for the Ramanujan graphs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.