Estimates of Dirichlet Eigenvalues for a Class of Sub-elliptic Operators (1905.13373v1)
Abstract: Let $\Omega$ be a bounded connected open subset in $\mathbb{R}n$ with smooth boundary $\partial\Omega$. Suppose that we have a system of real smooth vector fields $X=(X_{1},X_{2},$ $\cdots,X_{m})$ defined on a neighborhood of $\overline{\Omega}$ that satisfies the H\"{o}rmander's condition. Suppose further that $\partial\Omega$ is non-characteristic with respect to $X$. For a self-adjoint sub-elliptic operator $\triangle_{X}= -\sum_{i=1}{m}X_{i}{*} X_i$ on $\Omega$, we denote its $k{th}$ Dirichlet eigenvalue by $\lambda_k$. We will provide an uniform upper bound for the sub-elliptic Dirichlet heat kernel. We will also give an explicit sharp lower bound estimate for $\lambda_{k}$, which has a polynomially growth in $k$ of the order related to the generalized M\'{e}tivier index. We will establish an explicit asymptotic formula of $\lambda_{k}$ that generalizes the M\'{e}tivier's results in 1976. Our asymptotic formula shows that under a certain condition, our lower bound estimate for $\lambda_{k}$ is optimal in terms of the growth of $k$. Moreover, the upper bound estimate of the Dirichlet eigenvalues for general sub-elliptic operators will also be given, which, in a certain sense, has the optimal growth order.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.