Papers
Topics
Authors
Recent
2000 character limit reached

Discriminative Clustering for Robust Unsupervised Domain Adaptation

Published 30 May 2019 in cs.LG and stat.ML | (1905.13331v1)

Abstract: Unsupervised domain adaptation seeks to learn an invariant and discriminative representation for an unlabeled target domain by leveraging the information of a labeled source dataset. We propose to improve the discriminative ability of the target domain representation by simultaneously learning tightly clustered target representations while encouraging that each cluster is assigned to a unique and different class from the source. This strategy alleviates the effects of negative transfer when combined with adversarial domain matching between source and target representations. Our approach is robust to differences in the source and target label distributions and thus applicable to both balanced and imbalanced domain adaptation tasks, and with a simple extension, it can also be used for partial domain adaptation. Experiments on several benchmark datasets for domain adaptation demonstrate that our approach can achieve state-of-the-art performance in all three scenarios, namely, balanced, imbalanced and partial domain adaptation.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.