Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A generalisation of the honeycomb dimer model to higher dimensions (1905.13216v3)

Published 30 May 2019 in math.PR

Abstract: Linde, Moore, and Nordahl introduced a generalisation of the honeycomb dimer model to higher dimensions. The purpose of this article is to describe a number of structural properties of this generalised model. First, it is shown that the samples of the model are in one-to-one correspondence with the perfect matchings of a hypergraph. This leads to a generalised Kasteleyn theory: the partition function of the model equals the Cayley hyperdeterminant of the adjacency hypermatrix of the hypergraph. Second, we prove an identity which relates the covariance matrix of the random height function directly to the random geometrical structure of the model. This identity is known in the planar case but is new for higher dimensions. It relies on a more explicit formulation of Sheffield's cluster swap which is made possible by the structure of the honeycomb dimer model. Finally, we use the special properties of this explicit cluster swap to give a new and simplified proof of strict convexity of the surface tension in this case.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.