Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FairSearch: A Tool For Fairness in Ranked Search Results (1905.13134v2)

Published 27 May 2019 in cs.IR

Abstract: Ranked search results and recommendations have become the main mechanism by which we find content, products, places, and people online. With hiring, selecting, purchasing, and dating being increasingly mediated by algorithms, rankings may determine career and business opportunities, educational placement, access to benefits, and even social and reproductive success. It is therefore of societal and ethical importance to ask whether search results can demote, marginalize, or exclude individuals of unprivileged groups or promote products with undesired features. In this paper we present FairSearch, the first fair open source search API to provide fairness notions in ranked search results. We implement two algorithms from the fair ranking literature, namely FA*IR (Zehlike et al., 2017) and DELTR (Zehlike and Castillo, 2018) and provide them as stand-alone libraries in Python and Java. Additionally we implement interfaces to Elasticsearch for both algorithms, that use the aforementioned Java libraries and are then provided as Elasticsearch plugins. Elasticsearch is a well-known search engine API based on Apache Lucene. With our plugins we enable search engine developers who wish to ensure fair search results of different styles to easily integrate DELTR and FA*IR into their existing Elasticsearch environment.

Citations (82)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.