Papers
Topics
Authors
Recent
2000 character limit reached

A Generalization of the Octonion Fourier Transform to 3-D Octonion-Valued Signals -- Properties and Possible Applications to 3-D LTI Partial Differential Systems (1905.12631v2)

Published 29 May 2019 in math.CA, math-ph, and math.MP

Abstract: The paper is devoted to the development of the octonion Fourier transform (OFT) theory initiated in 2011 in articles by Hahn and Snopek. It is also a continuation and generalization of earlier work by Blaszczyk and Snopek, where they proved few essential properties of the OFT of real-valued functions, e.g. symmetry properties. The results of this article focus on proving that the OFT is well-defined for octonion-valued functions and almost all well-known properties of classical (complex) Fourier transform (e.g. argument scaling, modulation and shift theorems) have their direct equivalents in octonion setup. Those theorems, illustrated with some examples, lead to the generalization of another result presented in earlier work, i.e. Parseval and Plancherel Theorems, important from the signal and system processing point of view. Moreover, results presented in this paper associate the OFT with 3-D LTI systems of linear PDEs with constant coefficients. Properties of the OFT in context of signal-domain operations such as derivation and convolution of $\mathbb{R}$-valued functions will be stated. There are known results for QFT, but they use the notion of other hypercomplex algebra, i.e. double-complex numbers. Considerations presented here require defining other higher-order hypercomplex structure, i.e. quadruple-complex numbers. This hypercomplex generalization of the Fourier transformation provides an excellent tool for the analysis of 3-D LTI systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.