Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Automorphism group of the moduli space of parabolic bundles over a curve (1905.12404v2)

Published 29 May 2019 in math.AG

Abstract: We find the automorphism group of the moduli space of parabolic bundles on a smooth curve (with fixed determinant and system of weights). This group is generated by: automorphisms of the marked curve, tensoring with a line bundle, taking the dual, and Hecke transforms (using the filtrations given by the parabolic structure). A Torelli theorem for parabolic bundles with arbitrary rank and generic weights is also obtained. These results are extended to the classification of birational equivalences which are defined over "big" open subsets (3-birational maps, i.e. birational maps giving an isomorphism between open subsets with complement of codimension at least 3). Finally, an analysis of the stability chambers for the parabolic weights is performed in order to determine precisely when two moduli spaces of parabolic vector bundles with different parameters (curve, rank, determinant and weights) can be isomorphic.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.