Papers
Topics
Authors
Recent
2000 character limit reached

CopyCAT: Taking Control of Neural Policies with Constant Attacks (1905.12282v2)

Published 29 May 2019 in cs.LG, cs.CR, and stat.ML

Abstract: We propose a new perspective on adversarial attacks against deep reinforcement learning agents. Our main contribution is CopyCAT, a targeted attack able to consistently lure an agent into following an outsider's policy. It is pre-computed, therefore fast inferred, and could thus be usable in a real-time scenario. We show its effectiveness on Atari 2600 games in the novel read-only setting. In this setting, the adversary cannot directly modify the agent's state -- its representation of the environment -- but can only attack the agent's observation -- its perception of the environment. Directly modifying the agent's state would require a write-access to the agent's inner workings and we argue that this assumption is too strong in realistic settings.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.