Papers
Topics
Authors
Recent
2000 character limit reached

Selecting the Metric in Hamiltonian Monte Carlo (1905.11916v3)

Published 28 May 2019 in stat.CO and stat.ME

Abstract: We present a selection criterion for the Euclidean metric adapted during warmup in a Hamiltonian Monte Carlo sampler that makes it possible for a sampler to automatically pick the metric based on the model and the availability of warmup draws. Additionally, we present a new adaptation inspired by the selection criterion that requires significantly fewer warmup draws to be effective. The effectiveness of the selection criterion and adaptation are demonstrated on a number of applied problems. An implementation for the Stan probabilistic programming language is provided.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.