Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Dropout and Nuclear Norm Regularization (1905.11887v1)

Published 28 May 2019 in cs.LG, cs.AI, and stat.ML

Abstract: We give a formal and complete characterization of the explicit regularizer induced by dropout in deep linear networks with squared loss. We show that (a) the explicit regularizer is composed of an $\ell_2$-path regularizer and other terms that are also re-scaling invariant, (b) the convex envelope of the induced regularizer is the squared nuclear norm of the network map, and (c) for a sufficiently large dropout rate, we characterize the global optima of the dropout objective. We validate our theoretical findings with empirical results.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.