Randomized Row and Column Iterative Methods with a Quantum Computer (1905.11686v1)
Abstract: We consider the quantum implementations of the two classical iterative solvers for a system of linear equations, including the Kaczmarz method which uses a row of coefficient matrix in each iteration step, and the coordinate descent method which utilizes a column instead. These two methods are widely applied in big data science due to their very simple iteration schemes. In this paper we use the block-encoding technique and propose fast quantum implementations for these two approaches, under the assumption that the quantum states of each row or each column can be efficiently prepared. The quantum algorithms achieve exponential speed up at the problem size over the classical versions, meanwhile their complexity is nearly linear at the number of steps.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.