Papers
Topics
Authors
Recent
2000 character limit reached

Online Measurement-Based Estimation of Dynamic System State Matrix in Ambient Conditions (1905.11679v1)

Published 28 May 2019 in eess.SP

Abstract: In this paper, a purely measurement-based method is proposed to estimate the dynamic system state matrix by applying the regression theorem of the multivariate Ornstein-Uhlenbeck process. The proposed method employs a recursive algorithm to minimize the required computational effort, making it applicable to the real-time environment. One main advantage of the proposed method is model independence, i.e., it is independent of the network model and the dynamic model of generators. Among various applications of the estimated matrix, detecting and locating unexpected network topology change is illustrated in details. Simulation studies have shown that the proposed measurement-based method can provide an accurate and efficient estimation of the dynamic system state matrix under the occurrence of unexpected topology change. Besides, various implementation conditions are tested to show that the proposed method can provide accurate approximation despite measurement noise, missing PMUs, and the implementation of higher-order generator models with control devices.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.