Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

XLDA: Cross-Lingual Data Augmentation for Natural Language Inference and Question Answering (1905.11471v1)

Published 27 May 2019 in cs.CL, cs.AI, and cs.LG

Abstract: While natural language processing systems often focus on a single language, multilingual transfer learning has the potential to improve performance, especially for low-resource languages. We introduce XLDA, cross-lingual data augmentation, a method that replaces a segment of the input text with its translation in another language. XLDA enhances performance of all 14 tested languages of the cross-lingual natural language inference (XNLI) benchmark. With improvements of up to $4.8\%$, training with XLDA achieves state-of-the-art performance for Greek, Turkish, and Urdu. XLDA is in contrast to, and performs markedly better than, a more naive approach that aggregates examples in various languages in a way that each example is solely in one language. On the SQuAD question answering task, we see that XLDA provides a $1.0\%$ performance increase on the English evaluation set. Comprehensive experiments suggest that most languages are effective as cross-lingual augmentors, that XLDA is robust to a wide range of translation quality, and that XLDA is even more effective for randomly initialized models than for pretrained models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jasdeep Singh (5 papers)
  2. Bryan McCann (18 papers)
  3. Nitish Shirish Keskar (30 papers)
  4. Caiming Xiong (337 papers)
  5. Richard Socher (115 papers)
Citations (80)