Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 152 tok/s Pro
GPT OSS 120B 325 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Poisson fluctuations for edge counts in high-dimensional random geometric graphs (1905.11221v1)

Published 24 May 2019 in math.PR

Abstract: We prove a Poisson limit theorem in the total variation distance of functionals of a general Poisson point process using the Malliavin-Stein method. Our estimates only involve first and second order difference operators and are closely related to the corresponding bounds for the normal approximation in the Wasserstein distance by Last, Peccati and Schulte (2016). As an application of this Poisson limit theorem, we consider a stationary Poisson point process in $\mathbb{R}d$ and connect any two points whenever their distance is less than or equal to a prescribed distance parameter. This construction gives rise to the well known random geometric graph. The number of edges of this graph is counted that have a midpoint in the $d$-dimensional unit ball. A quantitative Poisson limit theorem for this counting statistic is derived, as the space dimension $d$ and the intensity of the Poisson point process tend to infinity simultaneously, showing that the phase transition phenomenon holds also in the high-dimensional set-up.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.