Papers
Topics
Authors
Recent
2000 character limit reached

On the minimum degree of the power graph of a finite cyclic group (1905.10781v1)

Published 26 May 2019 in math.CO and math.GR

Abstract: The power graph $\mathcal{P}(G)$ of a finite group $G$ is the simple undirected graph whose vertex set is $G$, in which two distinct vertices are adjacent if one of them is an integral power of the other. For an integer $n\geq 2$, let $C_n$ denote the cyclic group of order $n$ and let $r$ be the number of distinct prime divisors of $n$. The minimum degree $\delta(\mathcal{P}(C_n))$ of $\mathcal{P}(C_n)$ is known for $r\in{1,2}$, see [18]. For $r\geq 3$, under certain conditions involving the prime divisors of $n$, we identify at most $r-1$ vertices such that $\delta(\mathcal{P}(C_n))$ is equal to the degree of at least one of these vertices. If $r=3$ or if $n$ is a product of distinct primes, we are able to identify two such vertices without any condition on the prime divisors of $n$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.