Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

TIGS: An Inference Algorithm for Text Infilling with Gradient Search (1905.10752v1)

Published 26 May 2019 in cs.CL

Abstract: Text infilling is defined as a task for filling in the missing part of a sentence or paragraph, which is suitable for many real-world natural language generation scenarios. However, given a well-trained sequential generative model, generating missing symbols conditioned on the context is challenging for existing greedy approximate inference algorithms. In this paper, we propose an iterative inference algorithm based on gradient search, which is the first inference algorithm that can be broadly applied to any neural sequence generative models for text infilling tasks. We compare the proposed method with strong baselines on three text infilling tasks with various mask ratios and different mask strategies. The results show that our proposed method is effective and efficient for fill-in-the-blank tasks, consistently outperforming all baselines.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.