Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

PAC Guarantees for Cooperative Multi-Agent Reinforcement Learning with Restricted Communication (1905.09951v2)

Published 23 May 2019 in cs.LG and stat.ML

Abstract: We develop model free PAC performance guarantees for multiple concurrent MDPs, extending recent works where a single learner interacts with multiple non-interacting agents in a noise free environment. Our framework allows noisy and resource limited communication between agents, and develops novel PAC guarantees in this extended setting. By allowing communication between the agents themselves, we suggest improved PAC-exploration algorithms that can overcome the communication noise and lead to improved sample complexity bounds. We provide a theoretically motivated algorithm that optimally combines information from the resource limited agents, thereby analyzing the interaction between noise and communication constraints that are ubiquitous in real-world systems. We present empirical results for a simple task that supports our theoretical formulations and improve upon naive information fusion methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.