Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Feature-Based Bayesian Method for Content Popularity Prediction in Edge-Caching Networks (1905.09824v1)

Published 23 May 2019 in eess.SP

Abstract: Edge-caching is recognized as an efficient technique for future wireless cellular networks to improve network capacity and user-perceived quality of experience. Due to the random content requests and the limited cache memory, designing an efficient caching policy is a challenge. To enhance the performance of caching systems, an accurate content request prediction algorithm is essential. Here, we introduce a flexible model, a Poisson regressor based on a Gaussian process, for the content request distribution in stationary environments. Our proposed model can incorporate the content features as side information for prediction enhancement. In order to learn the model parameters, which yield the Poisson rates or alternatively content popularities, we invoke the Bayesian approach which is very robust against over-fitting. However, the posterior distribution in the Bayes formula is analytically intractable to compute. To tackle this issue, we apply a Monte Carlo Markov Chain (MCMC) method to approximate the posterior distribution. Two types of predictive distributions are formulated for the requests of existing contents and for the requests of a newly-added content. Finally, simulation results are provided to confirm the accuracy of the developed content popularity learning approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.