Learning When-to-Treat Policies
Abstract: Many applied decision-making problems have a dynamic component: The policymaker needs not only to choose whom to treat, but also when to start which treatment. For example, a medical doctor may choose between postponing treatment (watchful waiting) and prescribing one of several available treatments during the many visits from a patient. We develop an "advantage doubly robust" estimator for learning such dynamic treatment rules using observational data under the assumption of sequential ignorability. We prove welfare regret bounds that generalize results for doubly robust learning in the single-step setting, and show promising empirical performance in several different contexts. Our approach is practical for policy optimization, and does not need any structural (e.g., Markovian) assumptions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.