Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective Sentence Scoring Method using Bidirectional Language Model for Speech Recognition (1905.06655v1)

Published 16 May 2019 in cs.CL, cs.SD, and eess.AS

Abstract: In automatic speech recognition, many studies have shown performance improvements using LLMs (LMs). Recent studies have tried to use bidirectional LMs (biLMs) instead of conventional unidirectional LMs (uniLMs) for rescoring the $N$-best list decoded from the acoustic model. In spite of their theoretical benefits, the biLMs have not given notable improvements compared to the uniLMs in their experiments. This is because their biLMs do not consider the interaction between the two directions. In this paper, we propose a novel sentence scoring method considering the interaction between the past and the future words on the biLM. Our experimental results on the LibriSpeech corpus show that the biLM with the proposed sentence scoring outperforms the uniLM for the $N$-best list rescoring, consistently and significantly in all experimental conditions. The analysis of WERs by word position demonstrates that the biLM is more robust than the uniLM especially when a recognized sentence is short or a misrecognized word is at the beginning of the sentence.

Citations (4)

Summary

We haven't generated a summary for this paper yet.