Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Future Word Contexts in Neural Network Language Models (1708.05592v1)

Published 18 Aug 2017 in cs.CL

Abstract: Recently, bidirectional recurrent network LLMs (bi-RNNLMs) have been shown to outperform standard, unidirectional, recurrent neural network LLMs (uni-RNNLMs) on a range of speech recognition tasks. This indicates that future word context information beyond the word history can be useful. However, bi-RNNLMs pose a number of challenges as they make use of the complete previous and future word context information. This impacts both training efficiency and their use within a lattice rescoring framework. In this paper these issues are addressed by proposing a novel neural network structure, succeeding word RNNLMs (su-RNNLMs). Instead of using a recurrent unit to capture the complete future word contexts, a feedforward unit is used to model a finite number of succeeding, future, words. This model can be trained much more efficiently than bi-RNNLMs and can also be used for lattice rescoring. Experimental results on a meeting transcription task (AMI) show the proposed model consistently outperformed uni-RNNLMs and yield only a slight degradation compared to bi-RNNLMs in N-best rescoring. Additionally, performance improvements can be obtained using lattice rescoring and subsequent confusion network decoding.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xie Chen (166 papers)
  2. Xunying Liu (92 papers)
  3. Anton Ragni (22 papers)
  4. Yu Wang (939 papers)
  5. Mark Gales (52 papers)
Citations (22)